Berikutini adalah Soal dan Pembahasan Matematika Dasar SIMAK UI Tahun 2013 dengan kode soal 333. Jika kalian ingin download soalnya aja terlebih dahulu, silahkan. Contoh Soal Deret Geometri beserta Jawabannya Lengkap Kelas 11 – Pembahasan kali ini kami ingin mengulas kumpulan contoh soal deret geometri beserta jawabannya lengkap kelas 11. Apa itu deret geometri dan bagaimana rumus serta cara perhitungannya? Jika aritmatika merupakan barisan atau deretan angka dengan pola tertentu, geometri ini adalah jumlah dari barisan aritmatika tersebut. Suku-suku yang dijumlahkan mempunyai rasio tetap rasio = perbandingan antar suku. Misalnya, rasio antara suku kedua dengan pertama sama seperti rasio suku ketiga dengan yang kedua. Materi ini menjadi salah satu kurikulum pelajaran matematika di kelas 11 dan bahkan ada di mata kuliah. Maka dari itu, agar lebih mudah dipahami, berikut kami berikan kumpulan contoh soal deret geometri beserta jawabannya lengkap kelas 11 dari beberapa sumber terpercaya. Contoh Soal Barisan Geometri dan Deret GeometriDaftar IsiContoh Soal Barisan Geometri dan Deret GeometriSoal 1 Menentukan r rasioSoal 2 Menentukan UnSoal 3 Menentukan SnContoh Soal Deret Geometri SederhanaContoh Soal Deret Geometri Beserta Jawabannya Lengkap Kelas 11Contoh Soal Deret Geometri Tak Hingga Daftar Isi Contoh Soal Barisan Geometri dan Deret Geometri Soal 1 Menentukan r rasio Soal 2 Menentukan Un Soal 3 Menentukan Sn Contoh Soal Deret Geometri Sederhana Contoh Soal Deret Geometri Beserta Jawabannya Lengkap Kelas 11 Contoh Soal Deret Geometri Tak Hingga Sebelum membahas lebih jauh tentang contoh soal deret geometri beserta jawabannya lengkap kelas 11, pahami dulu tentang tiga rumus dasar yang digunakan dalam barisan dan deret geometri berikut ini Soal 1 Menentukan r rasio Jika dalam barisan geometri diketahui 1, 3, 9, 27, 81, …. Berapakah rasio dari deret tersebut? Pembahasan Diketahui a = 1, ditanyakan r = ? Maka r = Un / Un-1 r = U2 / U1 r = 3 / 1 r = 3 Jadi, rasio nilai r dari barisan geometri tersebut yaitu 3. Soal 2 Menentukan Un Un merupakan suku ke-n dalam suatu deret atau barisan dengan rumus Un = arn-1. , berikut contoh soalnya Dengan susunan bilangan geometri 1, 3, 9, 27, 81, …. Hitung berapa suku ke-6 dari barisan tersebut Un = 6. Pembahasan Un = arn-1 U6 = ar6-1 = 1 x 35 = 1 x 243 = 243 Jadi, nilai dari suku keenam dalam deret bilangan tersebut adalah 243. Soal 3 Menentukan Sn Sn merupakan jumlah dari semua suku-suku dalam barisan geometri. Untuk lebih mudah dalam memahami, berikut salah satu contoh soal deret geometri beserta jawabannya lengkap kelas 11 dalam perhitungan Sn Deret geometri 1, 3, 9, 27, 81, …. Hitunglah berapa nilai Sn dalam deret tersebut n = 3 ! Pembahasan a Sn = a rn – 1 / r – 1 S3 = 1 33 – 1 / 3 – 1 S3 = 1 x 26 / 2 S3 = 13 Maka, nilai dari Sn untuk n = 3 adalah 13. Contoh Soal Deret Geometri Sederhana Dalam contoh soal deret geometri beserta jawabannya lengkap kelas 11 paling sederhana menggunakan rumus Sn = a rn – 1 / r – 1. Berikut kami berikan beberapa contoh soalnya agar lebih mudah dipahami. Soal 1 Apabila diketahui suatu deret angka 5 + 15 + 45 + … Maka, berapakah jumlah 6 suku pertama dari deret tersebut? Pembahasan Diketahui a = 5, r = 3 Sehingga jumlah enam suku pertama yakni Sn = a rn – 1 / r – 1 S6 = 5 36 – 1 / 3 – 1 = / 2 = Jadi, jumlah dari 6 suku pertama barisan geometri tersebut adalah Soal 2 Berikut contoh soal deret geometri beserta jawabannya lengkap kelas 11 lainnya yang sering keluar saat ujian. Diketahui barisan geometri adalah 3, 6, 12, 24, 48, … . Berapa jumlah 7 suku pertamanya? Pembahasan Diketahui a = 3, r = 2, n = 7 Sehingga jumlah enam suku pertama yakni Sn = a rn – 1 / r – 1 S6 = 3 27 – 1 / 2 – 1 = 381 / 1= 381 Jadi, hasil dari jumlah tujuh suku pertama deret geometri tersebut adalah 381. Soal 3 Diketahui suatu bilangan membentuk deret geometri 4 + 12 + 36 + 108 +… Carilah berapa jumlah dari tujuh suku pertamanya! Diketahui a = 4, r = 3, n = 7 Sehingga jumlah enam suku pertama yakni Sn = a rn – 1 / r – 1 S6 = 4 37 – 1 / 3 – 1 = 4372 Maka dari hasil perhitungan, jumlah tujuh suku pertamanya adalah 4372. Soal 4 Dalam suatu deret membentuk 4 + 2 + 1 + 1/2 + ¼ ….. Hitunglah berapa jumlah barisan geometri dari susunan suku tersebut! Jawaban Diketahui a = 4 dan r = ½ Ditanyakan Sn = ? Sn = a / 1 – r = 4 / 1 – ½ = 4 / ½ = 4 x 2 = 8 Jadi, jumlah barisan geometri dari susunan bilangan tersebut adalah 8. Contoh Soal Deret Geometri Beserta Jawabannya Lengkap Kelas 11 Deret geometri umumnya digunakan pada perhitungan panjang lintasan bola. Bola dijatuhkan dari ketinggian tertentu, kemudian terus memantul yang membentuk ketinggian berbeda-beda hingga berhenti. Sehingga rasio dalam kasus tersebut yakni perbandingan tinggi pantulan pertama kali dengan tinggi mula-mulanya. Atau bisa juga dari perbandingan tinggi pantulan kedua dengan pertama. Berikut kami berikan contoh soal deret geometri beserta jawabannya lengkap kelas 11 lainnya Soal 1 Suatu spesies bakteri melakukan pembelahan diri jadi dua untuk setiap detik. Apabila di awal terdapat lima bakteri, berapa waktu yang dibutuhkan agar pembelahan tersebut menjadi 320 bakteri? Pembahasan Dari soal cerita tersebut diketahui a = 5, r = 2, Un = 320. Ditanyakan n = ? Un = arn -1 320 =5 x 2n -1 2n -1 = 320/5 2n -1 = 64 2n -1 = 26 n = 7 Sehingga, waktu yang diperlukan untuk membelah diri hingga menjadi 320 bakteri yakni 7 menit. Soal 2 Dalam suatu susunan bilangan yang membentuk deret geometri, diketahui bahwa suku pertamanya 3 serta suku ke sembilan adalah 768. Jadi, berapa suku ke-7 dari deret bilangan tersebut? Pembahasan Diketahui a = 3, U9 = 768 Un = arn-1 768 = 3 r9-1 768 = 3 x r8 r8 =768/3 r8 = 256 r8 = 28 r = 2 Maka suku ketujuh adalah U7 = 3 x 26 = 194. Contoh Soal Deret Geometri Tak Hingga Dalam contoh soal deret geometri beserta jawabannya lengkap kelas 11 juga ada jenis deret tak hingga yang dibedakan menjadi dua, yaitu divergen dan konvergen. Berikut kami berikan penjelasan perbedaan dan contoh soalnya Soal 1 Deret Geometri Tak Hingga Kategori Divergen Disebut divergen apabila dalam barisan angka tersebut nilainya semakin membesar dan tidak terhingga. Misalnya dalam deret angka 1 + 2 + 4 + 8 + 16 …. Kemudian dalam soal ditanyakan berapa nilai jumlah dari seluruh angka dalam barisan tersebut, maka tidak dapat dihitung dikarenakan nilainya yang terus membesar dan tidak terhingga. Soal 2 Deret Geometri Tak Hingga Kategori Konvergen Dalam contoh soal deret geometri beserta jawabannya lengkap kelas 11 lebih sering ditanyakan tentang baris tak hingga konvergen. Bedanya, dalam barisan konvergen ini nilainya semakin kecil sehingga bisa dihitung. Misalnya dalam barisan 4 + -2 + 1 + -1/2 + ¼ + …. Carilah berapa Stak hingga Pembahasan Rumus yang digunakan untuk Stak hingga adalah a / 1 – r Stak hingga = a / 1 – r = 4 / 1 –-1/2 = 4 / 1 + ½ = 4 / 3/2 = 4 x 2/3 = 8/3 Sehingga, nilai dari jumlah deret geometri tak terhingga tersebut adalah 8/3. Nah, di atas telah kami berikan contoh soal deret geometri beserta jawabannya lengkap kelas 11. Cukup mudah dipahami bukan? Kunci dalam mengerjakan geometri adalah dengan memahami tiga rumus utama seperti sudah kami cantumkan pada pembahasan pertama. Melalui kumpulan contoh soal deret geometri beserta jawabannya lengkap kelas 11 semoga bisa memberikan pengetahuan bagi para siswa, selamat belajar. Klik dan dapatkan info kost di dekatmu Kost Jogja Harga Murah Kost Jakarta Harga Murah Kost Bandung Harga Murah Kost Denpasar Bali Harga Murah Kost Surabaya Harga Murah Kost Semarang Harga Murah Kost Malang Harga Murah Kost Solo Harga Murah Kost Bekasi Harga Murah Kost Medan Harga Murah

sinikau miliki soal yang perintahnya diketahui bahwa 1 min 1 per 3 dikali 1 per 4 dikali 1 min 1 per 5 dikali 1 min 1 per 6 dan seterusnya per 2015 kali 1 Min t f 2016 = n Min 2013/2016 nomor dengan Sorry nih Kecamatan 1 Min sepertiga adalah 2 per 300 per 4 adalah 3 atau 45 adalah 4 per 55 per 6 dan seterusnya sehingga ada pola di sini di mana 6 per 7 + 1 Min menjadi 2014 ini menjadi 2015-2016 sebagai yang terakhir sehingga jika kita tulis bisa menjadi seperti bentuk ini2 per 3 dikali 3 per

Ayo, persiapkan dirimu sejak dini dalam menghadapi UTBK 2021! Lihat latihan soal tryout UTBK Episode 1 tahun 2021 untuk mata pelajaran Matematika IPA. — Sudah mengikuti tyout UTBK 1 dari ruanguji? Nah, masih penasaran mengenai pembahasan soal-soalnya? Yuk, lihat latihan soal tryout UTBK Episode 1 tahun 2021 untuk mata pelajaran Matematika IPA berikut ini. Jangan lupa untuk mempelajari lagi materi yang belum kamu kuasai ya. 1. Suatu perusahaan memproduksi x unit barang dengan biaya ribu rupiah untuk tiap unit. Jika barang tersebut terjual habis dengan harga untuk tiap unit, maka keuntungan maksimum yang diperoleh perusahaan tersebut adalah …. Pembahasan Misalkan fx menyatakan total biaya produksi x unit barang, g x menyatakan harga jual x unit barang dalam satuan ribu rupiah, dan hx menyatakan kentungan yang diperoleh atas penjualan x unit barang, maka diperoleh hasil-hasil sebagai berikut. Agar maksimum, nilai turunan pertama hx harus bernilai 0. Maka Diperoleh x = -1 atau x = 2. Karena x menyatakan jumlah barang dan nilainya tidak mungkin negatif atau pecahan, sehingga x yang diambil adalah x = 2. Dilakukan substitusi x = 2 ke hx, didapat Maka keuntungan maksimum yang diperoleh perusahaan tersebut adalah Jadi, jawabannya adalah B. 2. Sebuah balok memiliki panjang rusuk AB = 6 dan BC = CG = 4. Jika titik P terletak di tengah rusuk AB dan θ adalah sudut antara EP dan PG, maka nilai cosθ adalah …. Pembahasan Perhatikan gambar berikut ini! Perhatikan bahwa Sehingga Jadi, jawabannya adalah E. 3. Himpunan bilangan real x pada selang yang memenuhi memiliki bentuk Nilai dari adalah …. Pembahasan Perhatikan bahwa Pembuat nolnya adalah Maka didapat nilai-nilai x yang memenuhi adalah Didapat garis bilangannya sebagai berikut. Karena tanda pertidaksamaannya adalah maka didapat solusinya adalah Sehingga intervalnya adalah Akibatnya, Jadi, jawabannya adalahA. 4. Diketahui sebuah segitiga ABC dengan sudut B adalah 1050 dan sudut A adalah 150. Jika panjang AC adalah 5, maka panjang BC adalah …. Pembahasan Perhatikan gambar berikut ini! Dari gambar tersebut, didapat Dengan menggunakan aturan sinus, Jadi, jawabannya adalah E. 5. Diketahui vektor-vektor dan . Jika maka interval x yang memenuhi adalah …. Pembahasan Dari soal diketahui bahwa Maka Kemudian, karena , maka sehingga Lalu perhatikan bahwa dan juga Karena Sehingga didapat Pembuat nol dari bentuk di ruas kiri adalah Didapat garis bilangan sebagai berikut. Karena tanda pertidaksamaannya adalah maka solusinya adalah Namun, karena pada soaldiketahui maka diambil irisannya, yaitu Sehingga, interval x yang memenuhi adalah Jadi, jawabannya adalah B. 6. 25 26 27 576 676 Pembahasan Dengan menggunakan sifat-sifat pada eksponen, diperoleh sehingga Dengan demikian, kita peroleh Jadi, jawaban yang tepat adalah B. 7. Diketahui sistem persamaan Jika sistem persamaan tersebut memiliki tepat satu penyelesaian, maka jumlah semua nilai m yangmungkin adalah …. – 32 – 20 – 16 – 8 – 4 Pembahasan Penyelesaian sistem persamaan pada soal dapat diselesaikan sebagai berikut. Karena sistem persamaan di atas meiliki tepat satu penyelesaian, maka nilai Sehingga Maka jumlah semua nilai m adalah -8. Jadi, jawaban yang tepat adalah D. 8. – 2 – 6 0 2 6 Pembahasan Ingat kembali beberapa sifat yang berlaku pada integral, yaitu Dengan menggunakan kedua sifat tersebut, diperoleh Dengan demikian, Jadi, jawaban yang tepat adalah B. 9. Pembahasan Perhatikan bahwa Dengan demikian, Jadi, jawaban yang tepat adalah E. 10. Jika digeser sejauh a satuan ke kanan dan sejauh b satuan ke bawah, kemudian dicerminkan terhadap sumbu-y , bayangannya menjadi Nilai dari 3ab adalah …. – 15 – 12 – 10 – 6 0 Pembahasan Garis digeser sejauh a satuan ke kanan dan sejauh b satuan ke bawah, maka sehingga dan Dengan substitusi dan ke , maka bayangan garis hasil pergeseran diatas adalah Kemudian garis tersebut dicerminkan terhadap sumbu-y, maka Dengan substitusi ke , maka hasil pencerminan garis terhadap sumbu-y adalah Dengan demikian, kita peroleh Jadi, jawaban yang tepat adalah C. 11. Diketahui sistem persamaan berikut. Jika maka nilai dari adalah …. Pembahasan Kita tuliskan dua persamaan yang ada pada soal, yaitu sebagai berikut. dan Eliminasi dengan cara berikut. Oleh karena itu, didapat nilai sebagai berikut. Dengan demikian, nilai dari adalah sebagai berikut. Jadi, jawaban yang tepat adalah D. 12. Sebuah lingkaran memiliki pusat p, q dengan jari-jari 12, dan menyinggung garis Nilai yang mungkin adalah …. Pembahasan Diketahui bahwa suatu lingkaran memiliki pusat p, q, jari-jari 12, dan menyinggung garis . Oleh karena itu, didapat sebagai berikut. Kemudian, garis dapat dituliskan sebagai Didapat nilai a, b, dan c sebagai berikut. a = 5 b = 12 c = – 13 Selanjutnya, dapat diperhatikan perhitungan di bawah ini. Terdapat dua kemungkinan yaitu Kemungkinan pertama Kemungkinan kedua Dengan demikian, nilai yang mungkin adalah -143 dan 169. Jadi, jawaban yang tepat adalah D. 13. Suku banyak habis dibagi dan dibagi bersisa 20. Nilai ab adalah …. – 16 – 4 4 8 16 Pembahasan Dapat diperhatikan pembagian polinomial berikut ini. Oleh karena itu, didapat persamaan berikut. Kemudian, diketahui bahwa Oleh karena itu, substitusi dan Dikarenakan . Akibatnya, diperoleh nilai ab sebagai berikut. Dengan demikian, nilai ab = 16. Jadi, jawaban yang tepat adalah E. 14. Seorang berkendara dengan kecepatan 100 km/jam selama satu jam pertama. Pada jam kedua, kecepatan berkurang menjadi seperlimanya. Demikian juga pada jam berikutnya. Jarak terjauh yang dapat ditempuh orang tersebut adalah … km. 150 125 100 75 50 Pembahasan Dapat diperhatikan bahwa jarak yang ditempuh oleh seseorang pada jam pertama adalah 100 km. Kemudian, diketahui bahwa kecepatannya berkurang pada jam kedua. Akibatnya, jarak yang ditempuh orang tersebut pada jam kedua adalah Begitupun seterusnya sehingga jarak yang ditempuh orang tersebut dapat dituliskan sebagai berikut. Jarak yang ditempuh oleh seseorang tersebut membentuk deret geometri tak hingga dengan a = 100 dan r = sehingga dapat dituliskan sebagai berikut. Oleh karena itu, jarak terjauh yang dapat ditempuh orang tersebut adalah 125 km. Jadi, jawaban yang tepat adalah B. 15. Garis dirotasi searah jarum jam sebesar 1800 terhadap titik asal. Kemudian, digeser ke bawah sejauh b satuan dan ke kiri sejauh a satuan sehingga bayangannya menjadi . Nilai adalah …. Pembahasan Ingat bahwa jika suatu benda dirotasi sebesar searah jarum jam, maka sudut rotasinya diberi tanda negatif, sehingga menjadi Diketahui bahwa garis dirotasi sebesar 1800 searah jarum jam terhadap titik asal, maka bayangannya adalah sebagai berikut. Oleh karena itu, didapat nilai x dan y sebagai berikut. Akibatnya, garis menjadi Kemudian, digeser ke bawah sejauh b satuan dan ke kiri sejauh a satuan atau dapat dituliskan sebagai Didapat nilai x dan y berikut ini Akibatnya, garis menjadi Diketahui pada soal bahwa sama dengan Didapat dan Oleh karena itu, nilai dapat dihitung dengan cara sebagai berikut Dengan demikian, nilai Jadi, jawaban yang tepat adalah A. 16. maka nilai dari adalah …. Pembahasan Diketahui maka didapat Selanjutnya diketahui maka didapat Sehingga didapat Oleh karena itu didapat Dengan demikian, nilai dari adalah 0. Jadi, jawaban yang tepat adalah C. 17. Misalkan fungsi f memenuhi untuk setiap Jika maka nilai dari adalah …. – 3 3 – 5 6 – 6 Pembahasan Ingat bahwa Jika f periodik dengan periode p, maka Suatu fungsi f adalah periodik jika terdapat suatu bilangan p sedemikian sehingga Karena periodik dengan periode 4. Sehingga berlaku Dengan menggunakan sifat integral di atas, maka Dengan demikian, nilai dari adalah 6. Jadi, jawaban yang tepat adalah D. 18. Dari angka-angka 1, 4, 5, 6, 8, 9 akan dibentuk bilangan genap yang terdiri dari 3 digit berbeda. Banyak bilangan yang terbentuk yang nilainya kurang dari 400 adalah …. 30 20 12 9 8 Pembahasan Diketahui angka-angka 1, 4, 5, 6, 8, 9. Misalkan bilangan yang akan dibentuk adalah a1a2a3. a1 adalah angka yang menempati ratusan, a2 adalah angka yang menempati puluhan, dan a3 adalah angka yang menempati satuan. Karena akan dibentuk bilangan genap, maka banyak angka yang menempati satuan yaitu a3 ada 3 angka 4, 6, 8 Kemudian bilangan yang dibentuk nilainya kurang dari 400, maka banyak angka yang menempati ratusan yaitu a1 ada 1 angka 1 Selanjutnya perhatikan bahwa bilangan terdiri dari 3 digit berbeda, maka banyak angka yang menempati puluhan yaitu a2 ada 4 angka yang tersisa Sehingga didapat Dengan demikian, banyak bilangan yang terbentuk yang nilainya kurang dari 400 adalah 12. Jadi, jawaban yang tepat adalah C. 19. Diketahui barisan aritmetika dengan Uk menyatakan suku ke-k. Jika Uk+2 = U2 + kU17 – 3, maka U1+U13 +U19+U35= …. Pembahasan Perhatikan bahwa Sehingga didapatkan Dengan demikian, Jadi, jawaban yang tepat adalah E. 20. Suku banyak dibagi bersisa Nilai dari adalah …. 32 48 – 26 – 48 – 52 Pembahasan Perhatikan bahwa Selanjutnya perhatikan pembagian berikut ini. Diketahui maka Sehingga didapatkan dan Dengan demikian, Jadi, jawaban yang tepat adalah A. UTBK memang masih akan dilaksanakan tahun depan, tapi nggak ada salahnya untuk kamu mencuri start dan mulai mempersiapkan diri sejak dini. Mau mengukur kemampuanmu dalam mengerjakan soal-soal UTBK? Tunggu tryout UTBK Episode 2 dari ruanguji! Jawaban: k = - 1 atau k = 1 Perhatikan penjelasan berikut ya. Ingat kembali: → Jika vektor a adalah vektor satuan, maka |a| = 1 → Jika vektor a = (x , y z), maka |a| = √x²+y²+z² → Jika vektor a = p(x , y z), maka vektor a = (px, py, pz) → a² - b² = (a + b)(a - b) Diketahui : vektor a = k(1/√3, 1/√3, 1/√3) adalah vektor satuan → |a| = 1 Ditanya : nilai k = ?
Kelas 11 SMAInduksi MatematikaPrinsip Induksi MatematikaPrinsip Induksi MatematikaInduksi MatematikaALJABARMatematikaRekomendasi video solusi lainnya0103sigma n=1 4 2n+3=. . . .02081+2+4+8+. 2^n-1= 2^n -1 untuk setiap bilangan asli n0337Dengan induksi matematika, buktikan Pn = 1^2 +2^2 +3^2...0357Buktikan melalui induksi matematik bahwa 1/12+1/...Teks videojika melihat hal seperti ini maka dapat diselesaikan dengan menggunakan induksi matematika di mana pernyataan ini kita asumsikan dengan fungsi P N maka pertama dengan menggunakan induksi matematika langkah pertama kita substitusikan N = 1 maka p 1 harus kita tunjukan benar kemudian ngakak2 kita asumsikan PK benar maka TK + 1 akan kita tunjukan juga benar maka dari sini kita cari terlebih dahulu langkah pertamanya yaitu subtitusikan N = 1 maka kita akan tunjukan T1 harus benar maka PH 1 akan ekuivalen dengan 1 pangkat 3 = 1 atau 4 x 1 kuadrat dikali 1 + 1 kuadrat maka akan = 1 = 1 atau 4 x 2 kuadrat adalah 44 dibagi 4 adalah 1 maka dari sini kita dapat menunjukkan 1 = 1 karena ruas kiri dan kanan sama maka P1 dapat kita Nyatakan benar kemudian Langkah kedua kita subtitusikan n = k maka PKI nya akan = 1 ^ 3 + 2 ^ 3 + 1 + nya Hingga k ^ 3 = 1 per 4 x kuadrat 3 x + 1 kuadrat kemudian kita subtitusikan PK + 1 maka kita harus Tunjukkan bahwa ini juga benar maka 1 ^ 3 + 2 ^ 3 + seterusnya hingga k ^ 3 Q + dengan K + 1 ^ 3 a k = 1 per 4 x + 1 kuadrat dikali dengan K + 1 + 1 kuadratmaka dari sini jika kita Sederhanakan kita peroleh dari 1 ^ 3 sampai dengan K ^ 3 akan sama dengan 1 per 4 x kuadrat dikali x + 1 kuadrat ditambah dengan K + 1 ^ 3 akan sama dengan 1 per 4 x + 1 dikali 3 + 2 kuadrat kemudian kita samakan ruas kiri dan ruas kanan ya maka dari sini kita peroleh ruas kiri nya adalah = 1 per 4 x dengan x kuadrat x + 1 kuadrat ditambah dengan K + 1 ^ 3 karena di sini kita ingin menyamakan terlebih dahulu penyebutnya maka kita kali dengan 4/4 pada ca + 1 ^ 3 kemudian kita keluarkan 1/4dan K + 1 kuadrat Nya sehingga kita peroleh 1 per 4 dikali dengan K + 1 kuadrat dikali dengan k kuadrat + 4 k + 1 lalu kita Sederhanakan sehingga 1/4 x k + 1 kuadrat dikali dengan k kuadrat + 4 k + 4 kemudian kita faktorkan kita cari pemfaktoran yang jika kita kalikan menghasilkan 4 tetapi jika kita jumlahkan menghasilkan 4 k, maka dari sini ke faktornya adalah = 1 per 4 x + 1 kuadrat dikali K + 2 kuadrat kemudian kita ketahui bahwa pada ruas kanan nya adalah = 1 per 4 x + 1 kuadrat dikali K + 2 kuadrat karenakita tahu ruas kiri dan ruas kanan yang sama maka dari sini dapat kita simpulkan bahwa Langkah kedua dapat kita tunjukan atau terbukti benar kemudian karena pada soal ini langkah 1 dan angka 2 benar maka dapat kita simpulkan bahwa pernyataan ini juga benar untuk setiap n bilangan asli sekian sampai jumpa di pembahasan-soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Buktikanbahwa: 1 3 + 2 3 + 3 3 + + n 3 = ¼n 2 (n + 1) 2 1. Tunjukkan kebenarannya untuk n=1 1 3 = ¼ × 1 2 × 2 2 Benar. 2. Asumsikan benar untuk n=k 1 3 + 2 3 + 3 3 + + k 3 = ¼k 2 (k + 1) 2 Benar (Asumsi!) Jawaban: Sekarang, buktikan kebenarannya untuk "k+1" 1 3 + 2 3 + 3 3 + + (k + 1) 3 = ¼(k + 1) 2 (k + 2) 2 ?
Postingan ini menyajikan pembahasan soal OSK Matematika tahun 2019 kemampuan dasar. OSK adalah Olimpiade sains tingkat Kabupaten / Kota Calon tim olimpiade Indonesia tahun 2020. Jumlah soal OSK matematika kemampuan dasar adalah 10 soal. Durasi waktu pengerjaan soal ini adalah 60 1 – Pak Budi memiliki sawah berbentuk huruf L. Jika diketahui bahwa sawahnya Pak Budi hanya memiliki sisi yang panjangnya 5 meter dan 10 meter dan semua sudut sawahnya siku-siku, luas sawah Pak Budi adalah… meter pak Budi dapat digambarkan sebagai berikutPembahasan soal OSK matematika 2019 nomor 1Berdasarkan gambar diatas, sawah Pak Budi terdiri dari 2 bangun yaitu persegi panjang warna merah dan persegi warna kuning.Luas persegi panjang = p x l = 10 cm x 5 cm = 50 cm2Luas persegi = s x s = 5 cm x 5 cm = 25 cm2Luas sawah = 50 cm2 + 25 cm2 = 75 cm2Soal 2 – Jika sebuah jam sekarang menunjukkan pukul 1300 maka 2019 menit yang lalu jam tersebut menunjukkan pukul…PembahasanUntuk menjawab soal ini kita konversi terlebih dahulu 2019 menit menjadi jam yaitu 2019 / 60 jam = 33,65 jam = 24 jam + 9,65 1 hari = 24 jam maka jam kembali ke pukul 1300 lagi. Jadi 2019 menit yang lalu menunjukkan pukul 13 – 9,65 = 3,35 = 3 + 0,35 jam. Selanjutnya 0,35 jam dikonversi ke menit menjadi 0,35 x 60 = 21 menit. Jadi jam saat itu menunjukkan pukul 03 3 – Kedua akar persamaan kuadrat x2 – 111x + k = 0 adalah bilangan prima. Nilai k adalah…PembahasanPada soal ini diketahui a = 1, b = -111 dan c = k. Misalkan kedua akar persamaan kuadrat x1 dan x2 maka berdasarkan rumus jumlah dan hasil kali akar-akar persamaan kuadrat diperolehx1 + x2 = – b/a = – -111/1 = 111x1 . x2 = c/a = k/1 = kBilangan yang tepat untuk x1 = 2 dan x2 = 109 karena 2 dan 109 bilangan prima2 + 109 = 1112 . 109 = 218Soal 4 – Ani dan Banu bermain dadu enam sisi. Jika dadu yang keluar bernilai genap, maka Ani mendapatkan skor 1 sedangkan jika dadu yang keluar bernilai ganjil, maka Banu yang mendapatkan skor 1. Pemenang dari permainan ini adalah orang pertama yang mendapatkan skor total 5. Setelah dilakukan pelemparan dadu sebanyak 5 kali, Ani mendapatkan skor 4 dan Banu mendapatkan skor 1. Peluang Ani memenangkan permainan ini adalah…PembahasanKarena pemenang permainan ini adalah orang yang mendapatkan skor 5 maka jumlah maksimal pelemparan = 9. Ani akan menang jika Banu kalah. Banu akan menang jika dalam 4 pelemparan terakhir muncul mata dadu bernilai ganjil. Peluang Banu menang sebagai berikutPeluang muncul mata dadu ganjil = 3/6 = 1/2Peluang Banu menang = 1/2 x 1/2 x 1/2 x 1/2 = 1/16Jadi peluang Ani menang = 1 – 1/16 = 15/16 menggunakan rumus peluang komplemen.Soal 5 – Diketahui a + 2b = 1, b + 2c = 2, dan b ≠ 0. Jika a + nb + 2018c = 2019 maka nilai n adalah…PembahasanPembahasan soal OSK 2019 matematika nomor 5Jadi n = 6 – Misalkan a = 2 √ 2 – √ 8 – 4 √ 2 dan b = 2 √ 2 + √ 8 – 4 √ 2 . Jika ab + ba = x + y √ 2 dengan x, y bulat, maka nilai x + y = …PembahasanPembahasan soal OSK matematika 2019 nomor 6Soal 7 – Diberikan trapesium ABCD dengan AB sejajar CD. Misalkan titik P dan Q berturut-turut pada AD dan BC sedemikian sehingga PQ sejajar AB dan membagi trapesium menjadi 2 bagian yang sama luasnya. Jika AB = 17 dan DC = 7 maka nilai PQ adalah…PembahasanTrapesium soal OSK matematika 2019Segitiga BXC sebangun dengan segitiga QYC sehingga berlaku hubungan sebagai berikutBXQY = CXCY 5QY = m + nn m + n = 5nQY Luas trapesium ABCD = 2 luas trapesium DCQP1/2 AB + CD . CX = 2 . 1/2 DC + QP . n1/2 17 + 7 m + n = 7 + 7 + 2 QY . n12 5n/QY = 14 + 2 QYn60 = QY 14 + 2QY2Qy2 + 14QY – 60 = 0QY2 + 7QY – 30 = 0QY – 3 QY + 10 = 0QY = 3 atau QY = -10QY = -10 tidak mungkin sehingga panjang PQ = 7 + 2 QY = 7 + 2 . 3 = 8 – Tujuh buah bendera dengan motif berbeda akan dipasang pada 4 tiang bendera. Pada masing-masing tiang bendera bisa dipasang sebanyak nol, satu atau lebih satu bendera. Banyaknya cara memasang bendera tersebut adalah…PembahasanUntuk menjawab soal ini kita gunakan permutasi P 10, 7 sebagai berikutP 10, 3 = 10!10 – 7! P 10, 3 = 10 x 9 x 8 x 7 x 6 x 5 x 4 x 3!3! P 10, 3 = 9 – Misalkan n adalah bilangan asli terkecil yang semua digitnya sama dan sedikitnya terdiri dari 2019 digit. Jika n habis dibagi 126, maka hasil penjumlahan semua digit dari n adalah…PembahasanBilangan terkecil dengan digit sama yang habis dibagi 126 adalah 6 digit. Angka selanjutnya adalah 6 sebanyak kelipatan dari 6 12, 18, 24 dan seterusnya, contohnya sebagai berikut 12 digit 18 digit 24 digitDan seterusnyaPada soal ini sedikitnya terdiri dari 2019 digit, sehingga tentukan kelipatan 6 setelah 2019. Caranya kita bagi 2019 dengan 6 2019 6 = 336,5 atau dibulatkan menjadi 337. 6 x 337 = 2022. Jadi bilangan terkecil yang semua digitnya sama dan sedikitnya terdiri dari 2019 digit adalah 6 sebanyak 2022. Jika dijumlah maka hasilnya adalah 6 x 2022 = 10 – Untuk sebarang bilangan real x, simbol ⌊x⌋ menyatakan bilangan bulat terbesar yang tidak lebih besar daripada x, sedangkan ⌈x⌉ menyatakan bilangan bulat terkecil yang tidak lebih kecil dibanding x. Interval a, b adalah himpunan semua bilangan real x yang memenuhi ⌊2x⌋2 = ⌈x⌉ + 7. Nilai a . b adalah…Pembahasan⌊2x⌋2 = ⌈x⌉ + 74x2 – x – 7 = 0a = 4, b = – 1 dan c = – 7Determinan D = b2 – 4acD = -12 – 4 . 4 . -7 = 113 bukan bulangan kuadrat sempurna sehingga x bukan bilangan bulatx bukan bilangan bulat, misalkan x = ⌊x⌋ + α 0 < α < 1/2 maka ⌊2x⌋ = 2 ⌊x⌋ dan ⌈x⌉ = ⌊x⌋ + 1⌊2x⌋2 = ⌈x⌉ + 72⌊x⌋2 = ⌊x⌋ + 1 + 74⌊x⌋2 = ⌊x⌋ + 84⌊x⌋2 – ⌊x⌋ – 8 = 0Determinan D = b2 – 4acD = 12 – 4 . 4 . -8 = 129 bukan bilangan kuadrat atau x bukan bilangan bulatx bukan bilangan bulat, misalkan x = ⌊x⌋ + α 1/2 < α < 1 maka ⌊2x⌋ = 2 ⌊x⌋ + 1 dan ⌈x⌉ = ⌊x⌋ + 1⌊2x⌋2 = ⌈x⌉ + 72⌊x⌋ + 12 = ⌊x⌋ + 1 + 74⌊x⌋2 + 4 ⌊x⌋ + 1= ⌊x⌋ + 84⌊x⌋2 + 4 ⌊x⌋ – ⌊x⌋ + 1 – 8 = 0 4⌊x⌋2 + 3 ⌊x⌋ – 8 = 0Determinan D = b2 – 4acD = 32 – 4 . 4 .- 8 = 121 kuadrat dari 11⌊x⌋1,2 = -3 ± √ 32– 4 . 4 . -8 2 . 4 ⌊x⌋1,2 = -3 ± √ 121 8 ⌊x⌋1,2 = -3 ± 118 ⌊x⌋1 = 1 atau ⌊x⌋2 = – 14/8 = – 7/4 tidak mungkin x = ⌊x⌋ + αx = 1 + 1/2 = 1,5x = 1 + 1 = 2Jadi a . b = 1,5 x 2 = 3
1 Diketahui matriks . Nilai determinan dari matriks (AB - C) adalah a. -7 b. -5 c. 2 d. 3 e. 12 Pembahasan: Det (AB - C) = (12.1) - (9.1) = 12 - 9 = 3 Jawaban: D 2. Diketahui matriks , invers matriks AB adalah Pembahasan: Jawaban: A 3. Matriks X yang memenuhi: adalah Pembahasan: Jawaban: C 4. Jika maka Det (AB + C
SoalNomor 3. Diketahui bahwa $\vec{a} = \begin{pmatrix} 1 \\ 2 \\-3 \end{pmatrix}, \vec{b} = \begin{pmatrix} 4 \\ 4 \\ m \end{pmatrix}$, dan $\vec{c}= \begin{pmatrix} 3 \\-4 \\ 5 \end{pmatrix}$. Jika $\vec{a} \perp \vec{b}$, maka hasil dari $\vec a + 2 \vec b-\vec c = \cdots \cdot$ Jawaban Ada dua cara dalam membuktikan bahwa 1+1=3, 1.Redefinisi simbol-simbol matematika Saya akan menciptakan makna yang baru dari simbol-simbol matematika, jadi menurut matematika saya, elemen bilangan asli (bilangan bulat positif) diawali dengan {1, 3 , 2 ,4 , 5, 6, 7, 8, 9 } oleh karena IE7l.
  • 3gl1la2iax.pages.dev/48
  • 3gl1la2iax.pages.dev/133
  • 3gl1la2iax.pages.dev/174
  • 3gl1la2iax.pages.dev/117
  • 3gl1la2iax.pages.dev/202
  • 3gl1la2iax.pages.dev/247
  • 3gl1la2iax.pages.dev/278
  • 3gl1la2iax.pages.dev/178
  • 3gl1la2iax.pages.dev/21
  • diketahui bahwa 1 1 3